Hilbert transforms (HT) have first been used to build the essential technique of Grad‐Shafranov (GS) reconstruction by Li et al. (2013), where the problem of ill posedness in GS reconstruction has been thoroughly investigated. In this study, we present an extended Hilbert transform (EHT) over the plane rectangle. In contrast to previous one (HT over the unit circular region), corner singularities are introduced into these new formulae. It is confronted by problems like the integral with both endpoint singularities, and the semiinfinite integral with one endpoint singularity, as these EHT formulae are used to rebuild the essential technique of GS reconstruction. Two additional mathematic tools are adopted in this study. First, high‐accuracy quadrature schemes are constructed for those improper integrals based on the double exponential (DE) transformations. Benchmark testing with the analytic solutions on a rectangular boundary has shown the efficiency and robustness of the EHT formulae. Second, the data completion or the inverse boundary value problem is solved with the help of a truncated Chebyshev series, which approximates the unknown boundary gradients in very high efficiency under the only assumption that they are Lipschitz continuous on each side of the rectangle. Combining the introduced EHT formulae and the two needed mathematic tools, the essential technique of GS reconstruction is formulated into a linear system of Fredholm equations of the first kind. Then a three‐parameter Tikhonov regularization scheme is developed to deal with the ill‐posed linear operators appearing in the discretized linear system. This new approach for data completion over the plane rectangle is benchmarked with the analytic solutions. Numerical experiments highlight the efficiency and robustness of the proposed method.