Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and 2015
DOI: 10.2991/ifsa-eusflat-15.2015.118
|View full text |Cite
|
Sign up to set email alerts
|

Gradient extraction operators for discrete interval-valued data

Abstract: Digital images are generally created as discrete measurements of light, as performed by dedicated sensors. Consequently, each pixel contains a discrete approximation of the light inciding in a sensor element. The nature of this measurement implies certain uncertainty due to discretization matters. In this work we propose to model such uncertainty using intervals, further leading to the generation of so-called interval-valued images. Then, we study the partial differentiation of such images, putting a spotlight… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
16

Year Published

2016
2016
2019
2019

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(20 citation statements)
references
References 36 publications
0
4
0
16
Order By: Relevance
“…, 255u. The image O can be used to generate an interval-valued image O IV so as to count for the quantization and discretization errors [11]:…”
Section: Three Approaches Towards Image Edge Detection Using Iv-fmmmentioning
confidence: 99%
See 2 more Smart Citations
“…, 255u. The image O can be used to generate an interval-valued image O IV so as to count for the quantization and discretization errors [11]:…”
Section: Three Approaches Towards Image Edge Detection Using Iv-fmmmentioning
confidence: 99%
“…One of the problems one naturally faces when processing a digital image is the inherent uncertainty in the pixel values of a digital image due to image capture [13]. Even if the digital image is noiseless and if there is only one take of the image, uncertainty in the pixel values arises due to the following facts [11] 1. Quantization or Tonal Error: Any device will round captured values up or down so as to obtain one of the allowed values.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Erro tonal: As imagens reais possuem um número ilimitado de tons de cinza, no processamento de imagens computacionais é necessário limitar o quantidade de tons de cinza a um número finito, assim dependo do dispositivo de digitalização, sobre cada pixel gera-se um erro tonal, neste trabalho foi considerado o erro tonal de ±1 como na referência [17].…”
Section: Imagem Intervalarunclassified
“…Uma imagem digital possui incertezas e imprecisões inerentes ao processo de digita-lização. Lopez-Molina et al [17] modelaram esta imprecisão em forma de imagem intervalar para depois utilizá-las na detecção de bordas da imagem. A importância das bordas de uma imagem concentra-se na simplificação da análise das imagens e na redução drástica da quantidade de dados a serem processados.…”
unclassified