The aim of this research was to evaluate postharvest cherry tomato (Solanum lycopersicum (L.) Mill.) yield and fruit quality as affected by grafting and irrigation water quality in the desert region of Israel. Tomato plants (scion cv. Lorka) were grafted onto 3 commercial tomato rootstocks (Resistar, Beaufort and TRS2) and were irrigated with 2 water qualities: fresh water (electrical conductivity (EC)-1.6 dS m−1) and salty water (EC-4.0 dS m−1). Fresh water significantly increased fruit yield by an average of 17% and fruit size, regardless of plant grafting and rootstock, but there were no significant differences in fruit size between the water treatments. However, salty water, but not grafting, significantly improved several quality parameters of fruit stored for 12 d at 12 °C followed by 2 d at 20 °C in simulated sea transport of produce from Israel to Europe and marketing. Fruit harvested from plants irrigated with salty water showed higher sweetness, sourness and, especially, better general taste, and significantly reduced off-flavor, compared with those irrigated with fresh water. The combination of ‘Lorka’ on ‘Resistar’ rootstock and resulted in the best external, internal, and sensory quality parameters at the end of storability and marketing simulation, while the lowest-quality parameters were in fruit harvested from ‘Lorka’ on ‘Beaufort’ rootstock.