HighlightsExtensive phytochemical & sensory analysis conducted on 7 rocket salad accessions.Polyatomic ion & amino acid concentrations vary significantly between accessions.Isothiocyanates & sulfur volatiles associated with hotness & bitterness.‘Green’ VOCs & amino acids negatively associated with pungent sensations.Glucoraphanin & glucoerucin not correlated with sensory attributes.
The adoption of closed soilless systems is useful in minimizing the environmental impact of the greenhouse crops. Instead, a significant problem in closed soilless systems is represented by the accumulation of ions in the recycled nutrient solution (NS), in particular the unabsorbed or poorly absorbed ones. To overcome such problem, we: (1) studied the effect of several values of the electrical conductivity (EC) of NS in a NFT (Nutrient Film Technique) system on a cherry type tomato crop, and (2) define a NS (called recovery solution), based on the concept of “uptake concentration” and transpiration–biomass ratio, that fits the real needs of the plant with respect to water and nutrients. Three levels of EC set point (SP), above which the NS was completely replaced (SP5, SP7.5, and SP10 for the EC limit of 5, 7.5, and 10 dS m-1, respectively), were established. The SP10 treatment yield was not different from other treatments, and it allowed a better quality of the berries (for dry matter and total soluble solids) and higher environmental sustainability due to a lower discharge of total nutrients into the environment (37 and 59% with respect to SP7.5 and SP5, respectively). The recovery solution used in the second trial allowed a more punctual NS management, by adapting to the real needs of the crop. Moreover, it allowed a lesser amount of water and nutrients to be discharged into the environment and a better use of brackish water, due to a more accurate management of the EC of the NS. The targeted management, based on transpiration–biomass ratio, indicates that, in some stages of the plant cycle, the NS used can be diluted, in order to save water and nutrients. With such management a closed cycle can be realized without affecting the yield, but improving the quality of the tomato berries.
The “Carota di Polignano” (Polignano Carrot – PC, Daucus carota L.) is a multi-colored landrace, cultivated in the Southern Italy, whose colors range from yellow to purple. Iodine is an essential micronutrient for humans, since it is a key component of thyroid hormones, which regulate the growth and development of the human body. The main source for iodine assumption is represented by diet, but its concentration in the vegetables is usually limited with respect to human needs. To this purpose, two experimental trials (in open field and in greenhouse with a soil-less system) were carried out to enrich PC with iodine. Three levels of iodine (control treatment, C – 0 mg·L−1; low, L – 50 mg·L−1; and high, H – 500 mg·L−1), distributed with foliar spray fertilizations (in both open field and greenhouse) or with nutrient solution (in greenhouse, at the level of 50 mg·L−1) in the form of KIO3 were compared. In open field, the H treatment showed a biofortification that was double and triple respect to L and C treatments, respectively, without influencing color and biometric parameters, such as the fresh and dry weight of roots and DM percentage. In greenhouse, the biofortification done with foliar spray fertilization followed the same trend of open field, while the biofortification by means of nutrient solution was more effective but reached very high levels that had toxic effects on the plants and could be too high for human nutrition. However, the concentrations of iodine into biofortified carrots in open field can allow to satisfy the recommended daily allowance (RDA) by consuming 100 and 200 g of fresh product for the treatment H and L, respectively. Regarding the greenhouse biofortification, the RDA would be satisfied by consuming 200 g of fresh carrots (with the high level of foliar fertilization).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.