Publications on obtaining bulk nanostructured materials with special properties by various modes of severe plastic deformation, using nickel as an example, are briefly reviewed. Particular attention is paid to the state of grain boundaries, commonly referred to as nonequilibrium, or deformation-modified boundaries, revealed by electron microscopy, including scanning tunneling, Mossbauer spectroscopy, and diffusion studies. It is shown that contribution of specific state of grain boundaries to additional strengthening is often overestimated. In particular, in Ni processed by high pressure torsion, nonequilibrium grain boundaries are formed, which have increased energy and are ultrafast diffusion paths, but they contribute relatively little to the total strengthening.