Little is known about the distinct roles of the two types of IL-4R on DC. Here we report that IL-4 and IL-13 are able to promote DC maturation, as evaluated by up-regulation of MHC class II and costimulatory molecules, when the concentration of GM-CSF is relatively lower than the dose of IL-4 or IL-13. In addition, under these conditions both cytokines enable DC to respond to maturation stimuli such as bacterial products or proinflammatory cytokines. Both IL-4 and IL-13 act synergistically with weak maturation stimuli such as TNF-α or CD40. The IL-4R signaling for DC maturation requires the IL-4R α-chain and STAT6, but not Janus kinase 3, indicating that IL-4R type II signaling is preferentially responsible for these effects. In contrast, the production of IL-12 p70, but not IL-10 and TNF, induced by microbial products was enhanced only by IL-4, not by IL-13 or Y119D, a selective type II IL-4R agonist, in vitro and in vivo. This enhancement was dependent on the presence of Janus kinase 3, indicating that this function is exclusively mediated by the type I IL-4R. In short, we discerned the individual roles of the two IL-4R types on DC function, showing that IL-4R type I promotes IL-12 secretion independently of GM-CSF concentration, while IL-4R type II promotes the up-regulation of MHC class II and costimulatory surface markers in a GM-CSF concentration-dependent manner.