The investigation of real-time dynamic behavior evaluation in the active distribution networks (ADNs) is a challenging task, and it has great importance due to the emerging trend of distributed generations, electric vehicles, and flexible loads integration. The advent of new elements influences the dynamic behavior of the electric distribution networks and increases the assessment complexity. However, the proper implementation of low-cost phasor measurement units (PMUs) together with the development of power system applications offer tremendous benefits. Therefore, this paper proposes a PMU-based multi-dimensional dynamic index approach for real-time dynamic behavior evaluation of ADNs. The proposed evaluation model follows the assessment principles of accuracy, integrity, practicability, and adaptability. Additionally, we introduced low-cost PMUs in the assessment model and implemented them for real-time and high-precision monitoring of dynamic behaviors in the entire distribution network. Finally, a complete model called the real-time dynamic characteristics evaluation system is presented and applied to the ADN. It is pertinent to mention that our proposed evaluation methodology does not rely on the network topology or line parameters of the distribution network since only the phasor measurements of node voltage and line current are involved in the dynamic index system. Thus, the presented methodology is well adaptive to different operation states of ADN despite frequent topology changes. The validation of the proposed approach was verified by conducting simulations on the modified IEEE 123-node distribution network. The obtained results verify the effectiveness and relevance of the proposed model for the real-time dynamic behavior evaluation of ADNs.