Proceedings of the 13th International Conference on Web Information Systems and Technologies 2017
DOI: 10.5220/0006382104030410
|View full text |Cite
|
Sign up to set email alerts
|

Graph Community Discovery Algorithms in Neo4j with a Regularization-based Evaluation Metric

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
2

Year Published

2018
2018
2023
2023

Publication Types

Select...
4
3
2

Relationship

2
7

Authors

Journals

citations
Cited by 20 publications
(9 citation statements)
references
References 20 publications
0
7
0
2
Order By: Relevance
“…For an overview of recent security practices for mobile health applications see Papageorgiou et al (2018). Path analysis as in Kanavos et al (2017) play a central role in graph mining in various contexts, for instance in social networks as in Drakopoulos et al (2017). Finally, the advent of advanced GPU technologies can lead to more efficient graph algorithms as in Drakopoulos et al (2018).…”
Section: Previous Workmentioning
confidence: 99%
“…For an overview of recent security practices for mobile health applications see Papageorgiou et al (2018). Path analysis as in Kanavos et al (2017) play a central role in graph mining in various contexts, for instance in social networks as in Drakopoulos et al (2017). Finally, the advent of advanced GPU technologies can lead to more efficient graph algorithms as in Drakopoulos et al (2018).…”
Section: Previous Workmentioning
confidence: 99%
“…Practical ways and the associated challenges to implement a blockchain over IoT and edge computing are shown in Zyskind et al (2015). The financial prospects of Bitcoin in terms of wealth accumulation as well as the properties of Bitcoin versus the traditional fiat currency are the focus of a number of works, for instance Antonopoulos (2014), Antonopoulos (2017), Kosba et al (2016), Swan (2015), and Böhme et al (2015). The distributed implementation of blockchains is discussed in Abbas et al (2018) and in Pass et al ( 2017), whereas security aspects of the blockchains are treated in Puthal et al (2018).…”
Section: Previous Workmentioning
confidence: 99%
“…En el análisis de las redes sociales el descubrimiento de comunidades es esencial. Por ello, se implementan algoritmos para el descubrimiento de comunidades en Neo4j, evaluando los resultados obtenidos a través de la comparación de métricas de similitud (Kanavos et al, 2017). En este contexto, la descomposición de forma recursiva de un grafo permite el análisis de una red social, evidenciando que el algoritmo de detección de comunidades Louvain crea comunidades mejor distribuidas (Neo4j, 2020a).…”
Section: Estado Del Arteunclassified