We live in a hyperconnected world---connectivity that can sometimes be detrimental. Finding an optimal subset of nodes or links to disintegrate harmful networks is a fundamental problem in network science, with potential applications to anti-terrorism, epidemic control, and many other fields of study. The challenge of the network disintegration problem is to balance the effectiveness and efficiency of strategies. In this paper, we propose a cost-effective targeted enumeration method for network disintegration. The proposed approach includes two stages: searching candidate objects and identifying an optimal solution. In the first stage, we use rank aggregation to generate a comprehensive node importance ranking, upon which we identify a small-scale candidate set of nodes to remove. In the second stage, we use an enumeration method to find an optimal combination among the candidate nodes. Extensive experimental results on synthetic and real-world networks demonstrate that the proposed method achieves a satisfying trade-off between effectiveness and efficiency. The introduced two-stage targeted enumeration framework can also be applied to other computationally intractable combinational optimization problems, from team assembly, via portfolio investment, to drug design.