Polydopamine-coated Fe3 O4 magnetic nanoparticles synthesized through a facile solvothermal reaction and the self-polymerization of dopamine have been employed as a magnetic solid-phase extraction sorbent to enrich four phenolic compounds, bisphenol A, tetrabromobisphenol A, (S)-1,1'-bi-2-naphthol and 2,4,6-tribromophenol, from environmental waters followed by high-performance liquid chromatographic detection. Various parameters of the extraction were optimized, including the pH of the sample matrix, the amount of polydopamine-coated Fe3 O4 sorbent, the adsorption time, the enrichment factor of analytes, the elution solvent, and the reusability of the nanoparticles sorbent. The recoveries of these phenols in spiked water samples were 62.0-112.0% with relative standard deviations of 0.8-7.7%, indicating the good reliability of the magnetic solid-phase extraction with high-performance liquid chromatography method. In addition, the extraction characteristics of the magnetic polydopamine-coated Fe3 O4 nanoparticles were elucidated comprehensively. It is found that there are hydrophobic, π-π stacking and hydrogen bonding interactions between phenols and more dispersible polydopamine-coated Fe3 O4 in water, among which hydrophobic interaction dominates the magnetic solid-phase extraction performance.