Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.