Graphene plasmons are rapidly emerging as a viable tool for fast electrical manipulation of light. The prospects for applications to electro-optical modulation, optical sensing, quantum plasmonics, light harvesting, spectral photometry, and tunable lighting at the nanoscale are further stimulated by the relatively low level of losses and high degree of spatial confinement that characterize these excitations compared with conventional plasmonic materials. We start with a general description of the plasmons in extended graphene, followed by analytical methods that lead to reasonably accurate estimates of both the plasmon energies and the strengths of coupling to external light in graphene nanostructures, including graphene ribbons. We discuss several possible strategies to extend these plasmons towards the visible and near infrared, including a reduction in the size of the graphene structures and an increase in the level of doping. Specifically, we discuss plasmons in narrow ribbons and molecular-size graphene structures. We further formulate prescriptions based on geometry to increase the level of electrostatic doping without causing electrical breakdown. Results are also presented for plasmons in highly-doped single-wall carbon nanotubes, which exhibit similar characteristics as narrow ribbons and show a relatively small dependence on the chirality of the tubes. We further discuss perfect light absorption by a single-atom carbon layer, which we illustrate by investigating arrays of ribbons using fully analytical expressions. Finally, we explore the possibility of exploiting optically pumped transient plasmons in graphene, whereby the optically heated graphene valence band can sustain collective plasmon oscillations similar to those of highly doped graphene, and well-defined during the picosecond time window over which the electron is at an elevated temperature.Comment: 21 pages, 9 figures, comprehensive and tutorial description of graphene plasmonics, lots of analytical results that are easy to compute, proposed experiments, et
The optical response of ring-shaped gold nanoparticles prepared by colloidal lithography is investigated. Compared to solid gold particles of similar size, nanorings exhibit a redshifted localized surface plasmon that can be tuned over an extended wavelength range by varying the ratio of the ring thickness to its radius. The measured wavelength variation is well reproduced by numerical calculations and interpreted as originating from coupling of dipolar modes at the inner and outer surfaces of the nanorings. The electric field associated with these plasmons exhibits uniform enhancement and polarization in the ring cavity, suggesting applications in near-infrared surface-enhanced spectroscopy and sensing.
A modified seeded growth process has been used for the controlled synthesis of quasispherical, CTAB-stabilized gold nanoparticles from 12 up to 180 nm with narrow size distributions. The UV-visible spectra of the aqueous colloids show distinct bands corresponding to dipole and quadrupole plasmon modes, for diameters above 100 nm, in close agreement with predictions based on Mie theory. The assignment of the modes is demonstrated by calculation of near field enhancement maps based on the boundary element method. Apart from other applications, since absorption is drastically reduced above 600 nm, while scattering is largely increased, these particles open new possibilities for construction of highly efficient photonic structures.
We study the light scattering and surface plasmon resonances of Au nanorods that are commonly used as optical nanoantennas in analogy to dipole radio antennas for chemical and biodetection field-enhanced spectroscopies and scanned-probe microscopies. With the use of the boundary element method, we calculate the nanorod near-field and far-field response to show how the nanorod shape and dimensions determine its optical response. A full mapping of the size (length and radius) dependence for Au nanorods is obtained. The dipolar plasmon resonance wavelength lambda shows a nearly linear dependence on total rod length L out to the largest lengths that we study. However, L is always substantially less than lambda/2, indicating the difference between optical nanoantennas and long-wavelength traditional lambda/2 antennas. Although it is often assumed that the plasmon wavelength scales with the nanorod aspect ratio, we find that this scaling does not apply except in the extreme limit of very small, spherical nanoparticles. The plasmon response depends critically on both the rod length and radius. Large (500 nm) differences in resonance wavelength are found for structures with different sizes but with the same aspect ratio. In addition, the plasmon resonance deduced from the near-field enhancement can be significantly red-shifted due to retardation from the resonance in far-field scattering. Large differences in near-field and far-field response, together with the breakdown of the simple scaling law must be accounted for in the choice and design of metallic lambda/2 nanoantennas. We provide a general, practical map of the resonances for use in locating the desired response for gold nanoantennas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.