2021
DOI: 10.1155/2021/7619794
|View full text |Cite
|
Sign up to set email alerts
|

Grasp Detection under Occlusions Using SIFT Features

Abstract: Distinguishing target object under occlusions has become the forefront of research to cope with grasping study in general. In this paper, a novel framework which is able to be utilized for a parallel robotic gripper is proposed. There are two key steps for the proposed method in the process of grasping occluded object: generating template information and grasp detection using the matching algorithm. A neural network, trained by the RGB-D data from the Cornell Grasp Dataset, predicts multiple grasp rectangles o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 31 publications
0
0
0
Order By: Relevance