Active pharmaceutical ingredients (APIs) extracted and isolated from traditional Chinese medicines (TCMs) are of interest for drug development due to their wide range of biological activities. However, the overwhelming majority of APIs in TCMs (T-APIs), including flavonoids, terpenoids, alkaloids and phenolic acids, are limited by their poor physicochemical and biopharmaceutical properties, such as solubility, dissolution performance, stability and tabletability for drug development. Cocrystallization of these T-APIs with coformers offers unique advantages to modulate physicochemical properties of these drugs without compromising the therapeutic benefits by non-covalent interactions. This review provides a comprehensive overview of current challenges, applications, and future directions of T-API cocrystals, including cocrystal designs, preparation methods, modifications and corresponding mechanisms of physicochemical and biopharmaceutical properties. Moreover, a variety of studies are presented to elucidate the relationship between the crystal structures of cocrystals and their resulting properties, along with the underlying mechanism for such changes. It is believed that a comprehensive understanding of cocrystal engineering could contribute to the development of more bioactive natural compounds into new drugs.
In order to weaken the influence of backlash nonlinearity on a dual-motor driving servo system, we first establish the state-space model of the system. We then propose a new adaptive controller combining a projection algorithm with backstepping control for the first time, to the best of our knowledge, and analyze its stability. In the simulation analysis, we respectively choose a triangular wave, sawtooth wave, and random signal as the input signal. Simulation results validate a higher tracking accuracy and stronger adaptability of the proposed control law than that of mere backstepping control. In the experimental tests, we respectively choose a step signal and sine signal and simultaneously apply a white noise signal to the system output after 3 s in each test. The test results validate a stronger adaptability and robustness than that of mere backstepping control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.