The high reactivity of magnetic substrates toward molecular overlayers has so far inhibited the realization of more sophisticated on-surface reactions, thereby depriving these interfaces of a significant class of chemically tailored organics such as graphene nanoribbons, oligonuclear spin-chains, and metal-organic networks. Here, we present a multitechnique characterization of the polymerization of 4,4″-dibromo-p-terphenyl precursors into ordered poly(p-phenylene) arrays on top of the bimetallic GdAu surface alloy. The activation temperatures for bromine scission and subsequent homocoupling of molecular precursors were followed by temperature-dependent X-ray photoelectron spectroscopy. The structural characterizations of supramolecular and polymeric phases, performed by low-energy electron diffraction and scanning tunneling microscopy, establish an extraordinary degree of order extending into the mesoscale. Taking advantage of the high homogeneity, the electronic structure of the valence band was determined with angle-resolved photoemission spectroscopy. Importantly, the transition of localized molecular orbitals into a highly dispersive π-band, the fingerprint of successful polymerization, was observed while leaving all surface-related bands intact. Moreover, ferromagnetic ordering in the GdAu alloy was demonstrated for all phases by X-ray absorption spectroscopy. The transfer of well-established in situ methods for growing covalently bonded macromolecules with atomic precision onto magnetic rare-earth alloys is an important step toward toward studying and controlling intrinsic carbon- and rare-earth-based magnetism.