We report measurements of a new type of magnetoresistance in Pt and Ta thin films. The spin accumulation created at the surfaces of the film by the spin Hall effect decreases in a magnetic field because of the Hanle effect, resulting in an increase of the electrical resistance as predicted by Dyakonov [PRL 99, 126601 (2007)]. The angular dependence of this magnetoresistance resembles the recently discovered spin Hall magnetoresistance in Pt/Y 3 Fe 5 O 12 bilayers, although the presence of a ferromagnetic insulator is not required. We show that this Hanle magnetoresistance is an alternative, simple way to quantitatively study the coupling between charge and spin currents in metals with strong spin-orbit coupling.Spin-orbit interaction is an essential ingredient in materials and interfaces, offering the possibility to exploit the coupling between spin and orbital degrees of freedom of electrons in spintronic devices [1,2]. Of utmost importance are the spin Hall (SHE) and inverse spin Hall (ISHE) effects, which convert charge currents into transverse spin currents and vice versa, allowing us to create and detect spin currents in materials with strong spin-orbit coupling (SOC) [3][4][5][6][7][8]. In this framework, a new type of magnetoresistance (MR), spin Hall magnetoresistance (SMR), was discovered in nonmagnetic (NM) metal/ferromagnetic insulator (FMI) bilayers [9][10][11][12][13][14][15][16]. SMR arises from the simultaneous effect of SHE and ISHE in the NM layer -which leads to a decrease in its resistance-combined with the presence of a FMI at one of
We report the on-surface synthesis of 7-armchair graphene nanoribbons (7-AGNRs) substituted with nitrile (CN) functional groups. The CN groups are attached to the GNR backbone by modifying the 7-AGNR precursor. Whereas many of these groups survive the on-surface synthesis, the reaction process causes the cleavage of some CN from the ribbon backbone and the on-surface cycloisomerization of few nitriles onto pyridine rings. Scanning tunneling spectroscopy and density functional theory reveal that CN groups behave as very efficient n-dopants, significantly downshifting the bands of the ribbon and introducing deep impurity levels associated with the nitrogen electron lone pairs.
Surface-confined dehalogenation reactions are versatile bottom-up approaches for the synthesis of carbon-based nanostructures with predefined chemical properties. However, for devices generally requiring low-conductivity substrates, potential applications are so far severely hampered by the necessity of a metallic surface to catalyze the reactions. In this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO2(110) via a dehalogenative homocoupling of 4,4″-dibromoterphenyl precursors. The supramolecular phase is clearly distinguished from the polymeric one using low-energy electron diffraction and scanning tunneling microscopy as the substrate temperature used for deposition is varied. X-ray photoelectron spectroscopy of C 1s and Br 3d core levels traces the temperature of the onset of dehalogenation to around 475 K. Moreover, angle-resolved photoemission spectroscopy and tight-binding calculations identify a highly dispersive band characteristic of a substantial overlap between the precursor’s π states along the polymer, considered as the fingerprint of a successful polymerization. Thus, these results establish the first spectroscopic evidence that atomically precise carbon-based nanostructures can readily be synthesized on top of a transition-metal oxide surface, opening the prospect for the bottom-up production of novel molecule–semiconductor devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.