Bottom-up synthesis of graphene nanoribbons (GNRs) may open new possibilities in future electronic devices owing to their tunable electronic structure, which depends strongly on their well-defined width and edge geometry. For instance, armchair-edged GNRs (AGNRs) exhibit width-dependent bandgaps. However, the bandgaps of AGNRs synthesized experimentally so far are relatively large, well above 1 eV. Such a large bandgap may deteriorate device performance due to large Schottky barriers and carrier effective masses. Here, we describe the bottom-up synthesis of AGNRs with smaller bandgaps, using dibromobenzenebased precursors. Two types of AGNRs with different widths, namely 17 and 13 carbon atoms, were synthesized on Au(111), and their atomic and electronic structures were investigated by scanning probe microscopy and spectroscopy. We reveal that 17-AGNRs have the smallest bandgap, as well as the smallest electron/hole effective mass, among bottom-up AGNRs reported so far. The successful synthesis of 17-AGNRs is a significant step toward the development of GNR-based electronic devices.