Anticorrosive protection efficiency of novel tetrafunctional epoxy prepolymer, namely 2,3,4,5-tetraglycidyloxy pentanal (TGP), for mild steel in 1 M HCl medium was assessed through potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), contact angle (CA), adsorption isotherm model, temperature effect and thermodynamic parameters. The synthesized TGP was characterized and confirmed by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR). The inhibitory efficiencies found at lower concentration of the prepolymer TGP were85% (PDP) and 87.17% (EIS). PDP measurement illustrated that the TGP behaved as a mixed-type inhibitor in the realized solution. SEM and EDS analysis showeda significant decrease in the corrosion of the MS surface in the presence of the inhibitory prepolymer compared with the blank (1 M HCl). Langmuir adsorption isotherm is the most acceptable modelto describe the TGP epoxy prepolymer on the MS area.