Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
It is well-known that the number of particles produced in cosmology, commonly defined in the literature from the Fock space of the instantaneous hamiltonian of the canonically normalized fields, is ambiguous. On the other hand, the energy computed from the energy-momentum tensor should be physical. We compare the corresponding Fock spaces and relate them through a Bogolyubov transformation. We find that for particles of spin 0, 1 and 3/2 the two Fock spaces are different, whereas they are the same for spin 1/2 fermions. For spin 0 and 1, for particles of high momenta the two Fock spaces align, as intuitively expected. For the spin 3/2, one finds two puzzles. The first one is that the two corresponding Fock spaces do not match even in the limit of high momenta. The second is that whereas we provide evidence for the equivalence theorem between longitudinal gravitinos and the goldstino in terms of an exact matching between the lagrangians and the instantaneous hamiltonians for the canonically normalized fields, the energy operator computed from the Rarita-Schwinger action does not seem to be captured in a simple way by the goldstino action. Our results suggest a re-analysis of non-thermal gravitino production in cosmology.
It is well-known that the number of particles produced in cosmology, commonly defined in the literature from the Fock space of the instantaneous hamiltonian of the canonically normalized fields, is ambiguous. On the other hand, the energy computed from the energy-momentum tensor should be physical. We compare the corresponding Fock spaces and relate them through a Bogolyubov transformation. We find that for particles of spin 0, 1 and 3/2 the two Fock spaces are different, whereas they are the same for spin 1/2 fermions. For spin 0 and 1, for particles of high momenta the two Fock spaces align, as intuitively expected. For the spin 3/2, one finds two puzzles. The first one is that the two corresponding Fock spaces do not match even in the limit of high momenta. The second is that whereas we provide evidence for the equivalence theorem between longitudinal gravitinos and the goldstino in terms of an exact matching between the lagrangians and the instantaneous hamiltonians for the canonically normalized fields, the energy operator computed from the Rarita-Schwinger action does not seem to be captured in a simple way by the goldstino action. Our results suggest a re-analysis of non-thermal gravitino production in cosmology.
Dark photons are a theorized massive spin-1 particle which can be produced via various mechanisms, including cosmological gravitational particle production (GPP) in the early universe. In this work, we extend previous results for GPP of dark photons to include nonminimal couplings to gravity. We find that nonminimal couplings can induce a ghost instability or lead to runaway particle production at high momentum and discuss the constraints on the parameter space such that the theory is free of instabilities. Within the instability-free regime we numerically calculate the particle production and find that the inclusion of nonminimal couplings can lead to an enhancement of the particle number. As a result, GPP of nonminimally coupled dark photons can open the parameter space for production of a cosmological relevant relic density (constituting all or part of the dark matter) as compared to the minimally-coupled theory. These results are independent of the choice of inflation model, which we demonstrate by repeating the analysis for a class of rapid-turn multi-field inflation models.
We investigate the gravitational production of a scalar field χ with a mass exceeding the Hubble scale during inflation mχ ≳ HI, employing both analytical and numerical approaches. We demonstrate that the steepest descent method effectively captures the epochs and yields of gravitational production in a compact and simple analytical framework. These analytical results align with the numerical solutions of the field equation. Our study covers three spacetime backgrounds: de Sitter, power-law inflation, and the Starobinsky inflation model. Within these models, we identify two distinct phases of particle production: during and after inflation. During inflation, we derive an accurate analytic expression for the particle production rate, accounting for a varying Hubble rate. After inflation, the additional burst of particle production depends on the inflaton mass around its minimum. When this mass is smaller than the Hubble scale during inflation, HI, there is no significant extra production. However, if the inflaton mass is larger, post-inflation production becomes the dominant contribution. Furthermore, we explore the implications of gravitationally produced heavy fields for dark matter abundance, assuming their cosmological stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.