PurposeImage texture is increasingly used to discriminate tissues and lesions in PET/CT. For quantification or in computer-aided diagnosis, textural feature analysis must produce robust and comparable values. Because statistical feature values depend on image count statistics, we investigated in depth the stability of Haralick features values as functions of acquisition duration, and for common image resolutions and reconstructions.
MethodsA homogeneous cylindrical phantom containing 9.6 kBq/ml Ge-68 was repeatedly imaged on a Siemens Biograph mCT, with acquisition durations ranging from three seconds to three hours. Images with 1.5, 2, and 4 mm isometrically spaced voxels were reconstructed with filtered back-projection (FBP), ordered subset expectation maximization (OSEM), and the Siemens TrueX algorithm. We analysed Haralick features derived from differently quantized (3 to 8-bit) grey level co-occurrence matrices (GLCMs) as functions of exposure E, which we defined as the product of activity concentration in a volume of interest (VOI) and acquisition duration. The VOI was a 50 mm wide cube at the centre of the phantom. Feature stability was defined for df/dE ! 0.
ResultsThe most stable feature values occurred in low resolution FBPs, whereas some feature values from 1.5 mm TrueX reconstructions ranged over two orders of magnitude. Within the same reconstructions, most feature value-exposure curves reached stable plateaus at similar exposures, regardless of GLCM quantization. With 8-bit GLCM, median time to stability was 16 s and 22 s for FBPs, 18 s and 125 s for OSEM, and 23 s, 45 s, and 76 s for PSF