Dodecyl pyridinium bromide (DDPB), tetradecyl pyridinium bromide (TDPB) and dodecyl 1,1′-bispyridinium dibromide (DDBPB) were successfully synthesized, characterized and evaluated for HCl pickling of X-60 low carbon steel. Order of corrosion inhibitions efficiencies, as revealed by both electrochemical and gravimetric studies, is TDPB > DDPB > DDBPB. The degree of hydrophilicity of inhibitors as predicted by a partition coefficient (Log P) and supported by a contact angle measurement was found to be responsible for their order of corrosion inhibition efficiencies. Adsorption of DDPB, TDPB, and DDBPB through the pyridinium nitrogen on mild steel surface was confirmed by ATR-FTIR and SEM-EDX analyses. The pyridinium nitrogen was found not to be the only factor responsible for their efficiency, but hydrophobes and the orientation of the hydrophilic ring were responsible, which incline to the deviation of experimental results and the order of Monte Carlo simulation adsorption energies. DDPB, TDPB, and DDBPB obey the Langmuir isotherm model despite major contributions of the film formed on the surface of X-60 mild steel on their overall inhibition corrosion resistance.