Efficient magnetic reactive oxygen species (ROS) formation enhancing agents after X-ray treatment are realized by functionalizing superparamagnetic magnetite (Fe O ) and Co-ferrite (CoFe O ) nanoparticles with self-assembled monolayers (SAMs). The Fe O and CoFe O nanoparticles are synthesized using Massart's coprecipitation technique. Successful surface modification with the SAM forming compounds 1-methyl-3-(dodecylphosphonic acid) imidazolium bromide, or (2-{2-[2-hydroxy-ethoxy]-ethoxy}-ethyl phosphonic acid provides biocompatibility and long-term stability of the Fe O and CoFe O nanoparticles in cell media. The SAM-stabilized ferrite nanoparticles are characterized with dynamic light scattering, X-ray powder diffraction, a superconducting quantum interference device, Fourier transform infrared attenuated total reflectance spectroscopy, zeta potential measurements, and thermogravimetric analysis. The impact of the SAM-stabilized nanoparticles on the viability of the MCF-7 cells and healthy human umbilical vein endothelial cells (HUVECs) is assessed using the neutral red assay. Under X-ray exposure with a single dosage of 1 Gy the intracellular SAM stabilized Fe O and CoFe O nanoparticles are observed to increase the level of ROS in MCF-7 breast cancer cells but not in healthy HUVECs. The drastic ROS enhancement is associated with very low dose modifying factors for a survival fraction of 50%. This significant ROS enhancement effect by SAM-stabilized Fe O and CoFe O nanoparticles constitutes their excellent applicability in radiation therapy.