sources at 1000 lux had an irradiance of 340 and 320 µW cm −2 , respectively. The accuracy of the light meter and power meter is the primary determinant of the uncertainty in the measured PCE values, which amounts to approximately ±6-7%, as can be determined from a straightforward uncertainty analysis based on the device testing conditions and the specifications of the power and light meters. Consequently, the PCE values are reported herein with 1 decimal place.
The adsorption, desorption, co-adsorption, and exchange behavior of phosphonic acid, carboxylic acid, and catechol derivatives on the surface of titanium oxide (anatase) nanoparticles are investigated. Thermogravimetric analysis provides a facile and fast-track quantitative determination of the wet-chemical monolayer adsorption constants and grafting densities of ten adsorbates, all under neutral pH conditions. This characterization protocol allows straightforward quantification of the relevant thermodynamic data of ligand adsorption and a comparison of ligand adsorption strengths. The reported procedure is proposed as a universal tool and it should be applicable to many other colloidal metal oxide materials. Moreover, the determined values for the adsorption constants and the monolayer grafting densities provide a toolbox for the assessment of the adsorbates' behavior in desorption, exchange, and co-adsorption equilibria. This versatile evaluation procedure will help to identify optimal monolayer-surface combinations and to evaluate critical parameters, such as monolayer robustness, ligand exchange rates, or targeted mixed assembly of functionalities.
HIGHLIGHTS• The photodetection capabilities of emerging perovskite-inspired lead-free Ag 2 BiI 5 are investigated.• In self-powered mode, a near-constant photoresponse through the visible with a NIR rejection ratio of > 250 is obtained.• Optoelectronic characterization provides insight into the interplay among efficiency, collection distance, and film micro-/nano-structure. ABSTRACT In recent years, solution-processible semiconductors with perovskite or perovskite-inspired structures have been extensively investigated for optoelectronic applications. In particular, silver-bismuth-halides have been identified as especially promising because of their bulk properties and lack of heavily toxic elements.This study investigates the potential of Ag 2 BiI 5 for near-infrared (NIR)blind visible light photodetection, which is critical to emerging applications (e.g., wearable optoelectronics and the Internet of Things). Self-powered photodetectors were realized and provided a near-constant ≈ 100 mA W −1 responsivity through the visible, a NIR rejection ratio of > 250, a long-wavelength responsivity onset matching standard colorimetric functions, and a linear photoresponse of > 5 orders of magnitude. The optoelectronic characterization of Ag 2 BiI 5 photodetectors additionally revealed consistency with one-center models and the role of the carrier collection distance in self-powered mode. This study provides a positive outlook of Ag 2 BiI 5 toward emerging applications on low-cost and low-power NIR-blind visible light photodetector.
We present a facile solution-based procedure for tailoring the surface properties of aluminum oxide nanoparticles (AlOx-NPs) by the formation of tunable core-shell systems with self-assembled monolayers. By employing chained molecules with a phosphonic acid anchor group and either hydrophobic or hydrophilic chains the surface properties of the nanoparticles change dramatically. So, the solubility can be tuned orthogonal from trifluorotoluene (CF3-C6H5) for hydrophobic shell to water (H2O) for hydrophilic functionalization respectively. Spray coated films of those functionalized nanoparticles exhibited superhydrophobic or superhydrophilic properties. The surface properties can be tuned smoothly by the formation of a mixed ligand monolayer from corresponding stoichiometric mixtures of the ligands. The core-shell nanoparticles were investigated by means of thermogravimetric analysis, TGA; Fourier transform infrared spectroscopy, FTIR; and static contact angle goniometry, SCA. The effect of different dipole moments of the SAM molecules in mixed shell nanoparticles to their stability in dispersions was studied by zeta potential measurements.
Efficient magnetic reactive oxygen species (ROS) formation enhancing agents after X-ray treatment are realized by functionalizing superparamagnetic magnetite (Fe O ) and Co-ferrite (CoFe O ) nanoparticles with self-assembled monolayers (SAMs). The Fe O and CoFe O nanoparticles are synthesized using Massart's coprecipitation technique. Successful surface modification with the SAM forming compounds 1-methyl-3-(dodecylphosphonic acid) imidazolium bromide, or (2-{2-[2-hydroxy-ethoxy]-ethoxy}-ethyl phosphonic acid provides biocompatibility and long-term stability of the Fe O and CoFe O nanoparticles in cell media. The SAM-stabilized ferrite nanoparticles are characterized with dynamic light scattering, X-ray powder diffraction, a superconducting quantum interference device, Fourier transform infrared attenuated total reflectance spectroscopy, zeta potential measurements, and thermogravimetric analysis. The impact of the SAM-stabilized nanoparticles on the viability of the MCF-7 cells and healthy human umbilical vein endothelial cells (HUVECs) is assessed using the neutral red assay. Under X-ray exposure with a single dosage of 1 Gy the intracellular SAM stabilized Fe O and CoFe O nanoparticles are observed to increase the level of ROS in MCF-7 breast cancer cells but not in healthy HUVECs. The drastic ROS enhancement is associated with very low dose modifying factors for a survival fraction of 50%. This significant ROS enhancement effect by SAM-stabilized Fe O and CoFe O nanoparticles constitutes their excellent applicability in radiation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.