Internet of Things (IoT) is characterized as one of the leading actors for the next evolutionary stage in the computing world. IoT-based applications have already produced a plethora of novel services and are improving the living standard by enabling innovative and smart solutions. However, along with its rapid adoption, IoT technology also creates complex challenges regarding the management of IoT networks due to its resource limitations (computational power, energy, and security). Hence, it is urgently needed to refine the IoT-based application's architectures to robustly manage the overall IoT infrastructure. Software-defined networking (SDN) has emerged as a paradigm that offers software-based controllers to manage hardware infrastructure and traffic flow on a network effectively. SDN architecture has the potential to provide efficient and reliable IoT network management. This research provides a comprehensive survey investigating the published studies on SDN-based frameworks to address IoT management issues in the dimensions of fault tolerance, energy management, scalability, load balancing, and security service provisioning within the IoT networks. We conducted a Systematic Literature Review (SLR) on the research studies (published from 2010 to 2022) focusing on SDN-based IoT management frameworks. We provide an extensive discussion on various aspects of SDN-based IoT solutions and architectures. We elaborate a taxonomy of the existing SDN-based IoT frameworks and solutions by classifying them into categories such as network function virtualization, middleware, OpenFlow adaptation, and blockchain-based management. We present the research gaps by identifying and analyzing the key architectural requirements and management issues in IoT infrastructures. Finally, we highlight various challenges and a range of promising opportunities for future research to provide a roadmap for addressing the weaknesses and identifying the benefits from the potentials offered by SDN-based IoT solutions.