Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated ''reverse engineering'' approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future.coevolution ͉ modeling ͉ symbolic identification M any branches of science and engineering represent systems that change over time as sets of differential equations, in which each equation describes the rate of change of a single variable as a function of the state of other variables. The structures of these equations are usually determined by hand from first principles, and in some cases regression methods (1-3) are used to identify the parameters of these equations. Nonparametric methods that assume linearity (4) or produce numerical models (5, 6) fail to reveal the full internal structure of complex systems. A key challenge, however, is to uncover the governing equations automatically merely by perturbing and then observing the system in intelligent ways, just as a scientist would do in the presence of an experimental system. Obstacles to achieving this lay in the lack of efficient methods to search the space of symbolic equations and in assuming that precollected data are supplied to the modeling process.Determining the symbolic structure of the governing dynamics of an unknown system is especially challenging when rare yet informative behavior can go unnoticed unless the system is perturbed in very specific ways. Coarse parameter sweeps or random samplings are unlikely to catch these subtleties, and so passive machine learning methods that rely on offline analysis of precollected data may be ineffective. Instead, active learning (7) processes that are able to generate new perturbations or seek out informative part...