Inbreeding depression in closed populations impairs animal fitness, health, and productivity. However, not all inbreeding is expected to be equally damaging.Recent inbreeding is thought to be more harmful than ancient inbreeding because selection decreases the frequency of unfavourable alleles with time. Accordingly, selection efficiency is improved by inbreeding in a process called purging. This research aimed to quantify inbreeding depression on growth and prolificacy traits in two lines of rabbits selected for just one growth (Caldes line) or prolificacy (Prat line) trait, and also to find some evidence of purging of deleterious alleles by selection. Caldes line comprised 51 generations and 124,371 animals in the pedigree. Prat line comprised 34 generations and 161,039 animals in the pedigree.The effects of old, intermediate, and new inbreeding (Fold, Fint, and Fnew), as well as total cumulated classical inbreeding (F) and 3 measurements of ancestral inbreeding (AHC, Fa.K, and Fa.B) were estimated for average daily gain (ADG), slaughter weight (SW), weaning weight (WW), born alive (BA), the total number of kits (NT), and the number of weaned kits (NW). There was a clear inbreeding depression for all growth and prolificacy traits in the Caldes line (−7.19 g/d, −0.45 kg, −0.25 kg, −6 kits, −4 kits, and −4 kits per unit of increase in F for ADG, SW, WW, BA, NT, and NW, respectively) and also in Prat line (−7.48 g/d, −0.31 kg, −0.11 kg, −4 kits, −5 kits, and −4 kits per unit of increase in F for ADG, SW, WW, BA, NT, and NW, respectively). The inbreeding partition appears to be a reliable alternative for assessing inbreeding depression and purging. Thus, for example, in the Caldes line and for ADG the regression coefficients were −7.61, −5.41, and 7.76 g/d per unit of increase in Fnew, Fint, and Fold, respectively. In addition, AHC and Fa.B may provide more accurate evidence of purging than Fa.K. This study confirms the existence of inbreeding depression for growth and prolificacy traits in both lines of rabbits and shows evidence of purging of deleterious recessive alleles involved both in growth and prolificacy, independently of the selection criteria established in the line.