Using standard techniques from geometric quantization, we rederive the integral product of functions on ℝ2 (non-Euclidian) which was introduced by Pierre Bieliavsky as a contribution to the area of strict quantization. More specifically, by pairing the nontransverse real polarization on the pair groupoid ℝ2×ℝ¯2, we obtain the well-defined integral transform. Together with a convolution of functions, which is a natural deformation of the usual convolution of functions on the pair groupoid, this readily defines the Bieliavsky product on a subset of L2ℝ2.