To secure the ecosystem services forests provide, it is important to understand how different management practices impact various components of these ecosystems. We aimed to uncover how silvicultural treatments affected the ground-dwelling spider communities during the first five years of a forest ecological experiment. In an oak-hornbeam forest stand, five treatments, belonging to clear-cutting, shelterwood and continuous cover forestry systems, were implemented using randomised complete block design. Spiders were sampled by pitfall traps, and detailed vegetation, soil and microclimate data were collected throughout the experiment. In the treatment plots spider abundance and species richness increased marginally. Species composition changes were more pronounced and treatment specific, initially diverging from the control plots, but becoming more similar again by the fifth year. These changes were correlated mostly to treatment-related light intensity and humidity gradients. The patchy implementation of the treatments induced modest increase in both gamma and beta diversity of spiders in the stand. Overall, spiders gave a prompt and species specific response to treatments that was by the fifth year showing signs of relatively quick recovery to pre-treatment state. At the present fine scale of implementation the magnitude of changes was not different among forestry treatments, irrespective of their severity.