Video streaming over wireless channels is challenged with the time-varying nature of the underlying channels and the stringent requirements of video applications. In particular, video streaming has strict requirements on bandwidth, delay, and loss rate while wireless channels are dynamic and error-prone by nature. In this article, we propose a novel multilevel adaptive scheme that is designed to mitigate the challenges facing video streaming over unreliable channels. This is done while preventing potential playback discontinuities and guaranteeing a graceful degradation of the rendered video quality. Scalable video coding, adaptive modulation, and adaptive channel coding are integrated to achieve the objectives of the proposed scheme. If adaptive modulation and channel coding are not enough to guarantee the on-time delivery of decodable video frames, we adopt scalable coding. Simulation results show that the proposed adaptive scheme achieves an improvement of about 2.5 dB in the peak signal-to-noise ratio over a nonadaptive one. In addition, the proposed scheme reduces the number of starvation instances by 50 and 90% in the cases of Stop-and-Wait and Go-Back-N automatic repeat requests, respectively.