From the raw materials L-Serine and oxalic acid, the product Bis-LSeriniumoxalatedehydrate(BLSOD) was created. By using a slow evaporation process, the individual BLSOD crystals were produced from aqueous solution. According to single crystal X-ray Diffraction investigations, the structure of the produced crystal is monoclinic. The existence of different functional groups and the chemical environment present in the synthesised material were qualitatively determined through the use of Fourier Transform Infra-Red (FTIR) and proton nuclear magnetic resonance (H1NMR) spectrum studies. The crystal's transparency in the visible and near-infra-red areas was confirmed by UV-Visible-Near infrared and photoluminescence spectrum tests, which also looked at the material's viability for device construction. To determine the crystal's machinability, the mechanical properties of the material were carefully examined using Vicker's hardness research. Thermal investigations such as Thermo gravimetric (TGA) and Differential thermal analysis (DTA) have shown the thermal stability of BLSOD and the phases of weight losses. As a function of frequency and temperature, the dielectric constant and dielectric loss of grown crystals were determined. The Kurtz-Perry powder test was used to check both the second harmonic generation (SHG) and then the NLO property of the material.