We reported nucleation mechanisms of InP directly on Si (8% lattice mismatch) under confined structures, called micro-crucibles, at ultra-high vacuum (UHV) by chemical beam epitaxy (CBE). These micro-crucibles are used to induce lateral growth in the presence of a micro-scale Au catalyst. It is found that at this UHV condition, the kinetics is dictated predominantly by adatom surface diffusion. Using a two-step growth process ((1) In-only exposure, then, (2) simultaneous In and P exposures), InP islands have been successfully nucleated on Si substrates under micro-crucible structures. The nucleation of these InP islands strongly depends on the metal catalyst location relative to the micro-crucible opening with metal catalysts residing closer to the opening having a higher chance to get incorporated with In and P atoms. Importantly, we found that using smaller micro-crucibles with double openings can increase the possibility of having metal catalysts reside near either opening and nucleate InP under micro-crucibles.