Electrical impedance spectroscopic (EIS) monitoring of photodynamic therapy (PDT) was investigated in vivo in rat liver and in vitro in multicellular spheroids. Liver impedance was continuously measured with two needle electrodes before, during and up to 3 hours following Photofrin-PDT. EIS spectra were altered immediately after PDT, with significant changes in conductivity at approximately 10 kHz, and in permittivity at approximately 30 kHz and 1 MHz. The change in permittivity at high frequencies was related to oedema, while low-frequency effects were attributed to cell necrosis and vascular changes. Photofrin-PDT-treated spheroids showed dose-dependent decreases in permittivity and conductivity at frequencies above 10 and 100 kHz, respectively. Histology showed concomitant development of a damaged rim containing sparsely distributed cells with compromised membranes and lightly staining cytoplasm. Different EIS responses to apoptotic versus necrotic modes of cell death further verified the sensitivity of impedance to purely cellular changes in the spheroid model. In conclusion, EIS sensitivity to PDT-induced damage, at both the cell and tissue level, varies with dose and time, and can be correlated qualitatively to biological changes.