This chapter reviews the laser floating zone (LFZ) technique, also known as the laser-heated pedestal growth (LHPG), focusing on the recently produced rareearth-doped oxyorthosilicate fibers. LFZ has been revealed as a suitable prototyping technique since high-quality crystals can be developed in short time with low consumption of precursor materials in a crucible-free processing that ensures to practically avoid by-products. Moreover, additional advantages are the possibility to treat and melt highly refractory materials together with the easy way for tailoring the final microstructural characteristics and this way the macroscopic physical properties. Thus, refractory rare-earth (RE) doped oxyorthosilicates following the formula RE 2 SiO 5 have been recently produced by the LFZ technique for tuning laser emission parameters. The oxyorthosilicates have high chemical stability and allow incorporation of many rare-earth ions yielding different applications, such as laser host materials, gamma ray detectors or scintillators, environmental barrier coatings (EBCs) and waveguides, among others. Thus, different kinds of oxyorthosilicates were produced by the LFZ technique, and the detailed effects of the main processing parameters on crystal's characteristics are discussed in this chapter.