Phosphorus, first found in the seventeenth century, played an important role in the definition of the element term by Lavoisier and thus shaped the beginning of the era of modern chemistry. It was discovered for the first time in the most unstable crystalline modification—the white phosphorus. Today, a variety of experimentally proven allotropes are known. The most common allotropes, such as black, violet, and fibrous phosphorus, are described here with respect to their synthesis, crystal structures, thermal, and thermodynamic properties. Besides, more than 50 crystalline allotropes have been predicted, and their stabilities have been estimated using quantum‐chemical methods. This way, phosphorus becomes one of the most structurally variable elements of the periodic table. In this article, some of the most reasonable and sophisticated calculations are presented.
The applications of elemental phosphorus are mainly connected with its semiconducting properties. Thus, the development of current applications is strongly related to new synthesis methods for direct preparation of individual, phase pure allotropic forms of phosphorus. The past decade supplied basic results on the formation of black phosphorus and other modifications, primarily using the mineralizer concept.
Related to graphene and other two‐dimensional, layered structures, phosphorene is of drastically rising interest. The pertinent modifications are characterized by corrugated arrangement of six‐membered P‐rings, where both the boat conformation and the chair conformation are known. The application of phosphorene is in a jumping evolution. Currently, phosphorene is already in use in manifold ways, including as a sensor, optical device, transistor, energy‐conversion material, and supercapacitor material.