Blue phosphorus, a previously unknown phase of phosphorus, has been recently predicted by theoretical calculations and shares its layered structure and high stability with black phosphorus, a rapidly rising two-dimensional material. Here, we report a molecular beam epitaxial growth of single layer blue phosphorus on Au(111) by using black phosphorus as precursor, through the combination of in situ low temperature scanning tunneling microscopy and density functional theory calculation. The structure of the as-grown single layer blue phosphorus on Au(111) is explained with a (4 × 4) blue phosphorus unit cell coinciding with a (5 × 5) Au(111) unit cell, and this is verified by the theoretical calculations. The electronic bandgap of single layer blue phosphorus on Au(111) is determined to be 1.10 eV by scanning tunneling spectroscopy measurement. The realization of epitaxial growth of large-scale and high quality atomic-layered blue phosphorus can enable the rapid development of novel electronic and optoelectronic devices based on this emerging two-dimensional material.
The concept of using single molecules as key building blocks for logic gates, diodes and transistors to perform basic functions of digital electronic devices at the molecular scale has been explored over the past decades. However, in addition to mimicking the basic functions of current silicon devices, molecules often possess unique properties that have no parallel in conventional materials and promise new hybrid devices with novel functions that cannot be achieved with equivalent solid-state devices. The most appealing example is the molecular switch. Over the past decade, molecular switches on surfaces have been intensely investigated. A variety of external stimuli such as light, electric field, temperature, tunneling electrons and even chemical stimulus have been used to activate these molecular switches between bistable or even multiple states by manipulating molecular conformations, dipole orientations, spin states, charge states and even chemical bond formation. The switching event can occur either on surfaces or in break junctions. The aim of this review is to highlight recent advances in molecular switches triggered by various external stimuli, as investigated by low-temperature scanning tunneling microscopy (LT-STM) and the break junction technique. We begin by presenting the molecular switches triggered by various external stimuli that do not provide single molecule selectivity, referred to as non-selective switching. Special focus is then given to selective single molecule switching realized using the LT-STM tip on surfaces. Single molecule switches operated by different mechanisms are reviewed and discussed. Finally, molecular switches embedded in self-assembled monolayers (SAMs) and single molecule junctions are addressed.
Blue phosphorus, a newly proposed allotrope of phosphorus, represents a promising 2D material with predicted large tunable band gap and high charge-carrier mobility. Here, we report a simple method for the growth of quasi-free-standing single layer blue phosphorus on tellurium functionalized Au(111) by using black phosphorus as the precursor. In situ low-temperature scanning tunneling microscopy (LT-STM) measurements were used to monitor the growth of the single-layer blue phosphorus, which forms triangular structures arranged hexagonally on the tellurium layer. As revealed by in situ X-ray photoelectron spectroscopy, LT-STM measurements, and density functional theory calculation, the blue phosphorus layer weakly interacts with the underlying tellurium layer.
The growth of entirely synthetic two-dimensional (2D) materials could further expand the library of naturally occurring layered solids and provide opportunities to design materials with finely tunable properties. Among them, the synthesis of elemental 2D materials is of particular interest as they represent the chemically simplest case and serve as a model system for exploring the on-surface synthesis mechanism. Here, a pure atomically thin blue phosphorus (BlueP) monolayer is synthesized via silicon intercalation of the BlueP–Au alloy on Au(111). The intercalation process is characterized at the atomic scale by low-temperature scanning probe microscopy and further corroborated by synchrotron radiation-based X-ray photoelectron spectroscopy measurements. The evolution of the band structures from the BlueP–Au alloy into Si-intercalated BlueP are clearly revealed by angle-resolved photoemission spectroscopy and further verified by density functional theory calculations.
The interface properties of organic-organic heterojunctions (OOHs), such as interface energy level alignment (ELA), interfacial charge transfer, interface nanostructuring, molecular orientation and so on, play an essential role in determining the device performance for some technologically important organic electronic devices, encompassing organic solar cells, bipolar organic field-effect-transistors, and organic light-emitting-diodes. The aim of this article is to provide a balanced assessment on the understanding of the ELA at the small-molecule based OOH interfaces with well-defined molecular orientation, with particular emphasis on the role of gap states in organic thin films. A generalized picture of gap states determined ELA at the OOH interfaces is provided and their implications in relevant organic electronic devices have been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.