Soy sauce, as a traditional seasoning, is widely favoured by Chinese and other Asian people for its unique colour, smell, and taste. In this study, a salt-tolerance Saccharomyces cerevisiae strain HF-130 was obtained via three rounds of ARTP (Atmospheric and Room Temperature Plasma) mutagenesis and high-salt based screening. The ethanol production of mutant HF-130 was increased by 98.8% in very high gravity fermentation. Furthermore, ATF1 gene was overexpressed in strain HF-130, generating ester-producing strain HF-130-ATF1. The ethyl acetate concentration of strain HF-130-ATF1 was increased by 130% compared to the strain HF-130. Finally, the soy sauce fermentation performance of Torulopsis globosa and HF-130-ATF1 was compared with T. globosa, HF-130, HF-130-ATF1, and Torulopsis and HF-130. Results showed ethyl acetate and isoamyl acetate concentrations in co-fermentation of T. globosa and HF-130-ATF1 were increased by 2.8-fold and 3.3-fold, respectively. In addition, the concentrations of ethyl propionate, ethyl caprylate, phenylethyl acetate, ethyl caprate, isobutyl acetate, isoamyl alcohol, phenylethyl alcohol, and phenylacetaldehyde were also improved. Notably, other three important flavour components, trimethylsilyl decyl ester, 2-methylbutanol, and octanoic acid were also detected in the co-fermentation of T. globosa and HF-130-ATF1, but not detected in the control strain T. globosa. This work is of great significance for improving the traditional soy sauce fermentation mode, and thus improving the flavour formation of soy sauce.