Arginase-1 (Arg-1)-expressing M2-like macrophages are associated with Th2-skewed immune responses, allergic airway pathology, ectopic B16 melanoma cancer growth in murine models, and can be induced by Oncostatin M (OSM) transient overexpression in vivo. Here, we compare OSM to the gp130-cytokine IL-6 in mediating macrophage polarization, and find that IL-6 overexpression alone (Ad vector, AdIL-6) did not induce Arg-1 protein in mouse lungs at day 7, nor ectopic melanoma tumor growth at day 14, in contrast to overexpression of OSM (AdOSM). AdOSM elevated levels of IL-4, IL-5 and IL-13 in bronchoalveolar lavage fluid, whereas AdIL-6 did not. Bone marrow-derived macrophages respond with Arg-1 enzymatic activity to M2 stimuli (IL-4/IL-13), which was further elevated in combination with IL-6 stimulation; however, OSM or LIF had no detectable activity in vitro. Arg-1 mRNA expression induced by AdOSM was attenuated in IL-6-/- and STAT6-/- mice, suggesting requirements for both IL-6 and IL-4/IL-13 signaling in vivo. Ectopic B16 tumor burden was also reduced in IL-6-/- mice. Thus, OSM induces Arg-1+ macrophage accumulation indirectly through elevation of Th2 cytokines and IL-6 in vivo, whereas IL-6 acts directly on macrophages but requires a Th2 microenvironment, demonstrating distinct roles for OSM and IL-6 in M2 macrophage polarization.