The discovery that peptide nucleic acids (PNA) mimic DNA and RNA by forming complementary duplex structures following Watson-Crick base pairing rules opens fields in biochemistry, diagnostics, and medicine for exploration. Progress requires the development of modified PNA duplexes having unique and well defined properties. We find that anthraquinone groups bound to internal positions of a PNA oligomer intercalate in the PNA-DNA hybrid. Their irradiation with near-UV light leads to electron transfer and oxidative damage at remote GG doublets on the complementary DNA strand. This behavior mimics that observed in related DNA duplexes and provides the first evidence for long range electron (hole) transport in PNA-DNA hybrid. Analysis of the mechanism for electron transport supports hole hopping.Peptide nucleic acid (PNA) oligomers are DNA͞RNA analogs (see Fig. 1) in which the natural sugar-phosphate backbone is replaced by a synthetic peptide backbone (1). PNA oligomers that contain purine and pyrimidine nucleobases hybridize with complementary DNA and RNA strands to form right-handed, double-helical complexes according to the Watson-Crick rules of hydrogen bond-mediated base pair formation (2). Although much has been learned about the structural (3) and thermodynamic (4) factors involved in hybridization, little is known about the chemical reactivity of PNA͞DNA hybrids. It is crucial to understand how PNA͞DNA hybrids mimic the reactions and functions of duplex DNA. Of immediate importance for their application as clinical diagnostic agents is investigation of the conductivity of DNA and its PNA analogs (5, 6).DNA must balance the dual requirements of chemical stability and ease of transcription and replication (7). It is clear that DNA is far from inert toward a variety of different reactive species, particularly oxidizing agents. Oxidative damage to DNA produced by normal metabolism, deep-UV laser irradiation (8), gamma rays (9), or pulse radiolysis (10) accumulates at guanine residues, an effect attributed to one-dimensional migration of a radical cation (''hole'') along the DNA helix (11). Both the low oxidation potential and reactivity of the guanine radical cation contribute to the effectiveness of guanine as a trap for the migrating hole. Because guanine lesions may be the major cause of mutations (12), intense attention is focused on understanding the conductivity properties of DNA to elucidate the mechanisms by which migration of oxidative damage occurs (13). In this regard, the recent reports by Barton and coworkers are particularly important (14, 15). They describe a system consisting of a rhodium complex that is covalently linked to one end of a DNA duplex. Irradiation caused damage to the DNA more than 30 Å from where the complex was presumed to intercalate. This observation opens up exciting opportunities to study the factors that control hole migration in nucleic acids.Photosensitizers often react with nucleic acids by single electron transfer to oxidize a base. Recent findings reveal that the...