Objective:The purpose of this study was to evaluate the shear bond strength of fissure sealant materials containing bioactive compounds.Methods: Hundred extracted human molar teeth were embedded in to acrylic molds and then categorized into five groups: Fissurit FX (Control Group), Aegis®, Premier BioCoat®, BeautiSealant and BeautiSealant+-Phosphoric acid. All the test materials were prepared by applying them to the buccal surface of the teeth and then shear bond strength test was performed at a speed of 0.5 mm/min. The shear bond strength data were assessed via analysis of variance (ANOVA) and Tukey's tests, fracture types were analyzed by the Chi-square test at a significance level of 0.05.
Results:For test materials, the highest shear bond strength (75.78±18.51 MPa) and the lowest shear bond strength (37.34±8.39 MPa) were calculated for BeautiSealant+Phosphoric acid and BeautiSealant group respectively. The mean values of groups were sorted in descending order as BeautiSealant+Phosphoric acid>Ae-gis®>Fissurit FX>Premier BioCoat®>BeautiSealant. There was no statistically significant difference between Premier BioCoat® and BeautiSealant (P = .850). Furthermore, there was no statistically significant difference among Aegis®, Fissurit FX and BeautiSealant + Phosphoric acid groups (P > .05).
Conclusion:The shear bond strength of the tested fissure sealant materials containing bioactive compounds on enamel surface were affected by the content of the material and the application methods. The treatment applied to the enamel while applying the BeautiSealant material affects the shear bond values. BeautiSealant applied with phosphoric acid has higher shear bond strength to enamel tissue than when the material is used alone.