The distal radius bears unique forces during gymnastic activity. Its relatively simple anatomy, minimal soft tissue envelope and varied composition make the distal radius ideal for evaluating the effects of loading on bone properties. For 56 premenarcheal gymnasts and non-gymnasts, ultradistal and 1/3 distal radius DXA scans measured bone mineral content (BMC), areal bone mineral density and projected area. Simplified geometric models were used to generate bone mineral apparent density (BMAD), geometric indices, strength indices and fall strength ratios. Ratios of regional BMC vs. total body fat free mass (FFM) were calculated. Separate Tanner I and II analyses of covariance adjusted bone parameters for age and height. Ratios were compared using maturity-matched analyses of variance. At the 1/3 region, periosteal width, BMC, cortical cross-sectional area, and section modulus were greater in gymnasts than non-gymnasts (p<0.05); 1/3 BMAD means were equivalent. Ultradistal BMAD, BMC and index for structural strength in axial compression were higher in gymnasts than non-gymnasts; ultradistal periosteal width was only larger in Tanner I gymnasts. Fall strength ratios and BMC/FFM ratios were greater in gymnasts (p<0.05). Geometric and volumetric responses to mechanical loading are site-specific during late childhood and early adolescence.The distal radius bears unique forces during gymnastic activity, and fan beam magnification error is negligible at this site, making it ideal for DXA evaluation of associated bone properties. For 56 premenarcheal gymnasts and non-gymnasts, ultradistal and 1/3 distal radius DXA scans measured bone mineral content, areal bone mineral density and projected area. Simplified geometric models were used to generate bone mineral apparent density, geometric indices, strength indices and fall strength ratios. Ratios of regional bone mineral content vs. total body fat free mass were calculated. Separate Tanner I and II analyses of covariance adjusted bone parameters for age and height. Ratios were compared using maturity-matched analyses of variance. At the 1/3 region, periosteal width, bone mineral content, cortical cross-sectional area, and section modulus were greater in gymnasts than non-gymnasts (p<0.05); 1/3 bone mineral apparent densities were equivalent. Gymnasts' ultradistal bone mineral apparent density, bone mineral content and index for structural strength in axial compression were higher; ultradistal periosteal width was only larger in Tanner I gymnasts. Fall strength ratios and bone mineral content vs. fat-free mass were greater in gymnasts (p<0.05). Gymnasts' geometric and volumetric responses to mechanical loading are site-specific during late childhood and early adolescence.