Objective
The magnitude and role of the cellular immune response following pediatric traumatic brain injury (TBI) remains unknown. We tested the hypothesis that macrophage/microglia and T-cell activation occurs following pediatric TBI by measuring cerebrospinal fluid (CSF) levels of sCD163 and ferritin, and sIL-2Rα, respectively, and determined whether these biomarkers were associated with relevant clinical variables and outcome.
Design
Retrospective analysis of samples from an established, single-center CSF bank.
Setting
Pediatric Intensive Care Unit (PICU) in a tertiary Children’s Hospital
Patients
Sixty-six pediatric patients after severe TBI (Glasgow coma scale score [GCS]<8) age 1 mo-16 y and 17 control patients age 1 mo-14 y.
Measurements and Main Results
CSF levels of sCD163, ferritin, and sIL-2Rα were determined by ELISA at 2 time points (t1=17±10, t2=72±15 h) for each TBI patient. CSF sCD163, ferritin, and sIL2Rα levels after TBI were compared with controls and analyzed for associations with age, patient sex, initial GCS, diagnosis of abusive head trauma (AHT), the presence of hemorrhage on computerized tomography scan, and Glasgow outcome scale score (GOS).
CSF sCD163 was increased in TBI patients at t2 vs. t1 and controls (95.4[21.8–134.0] vs. 31.0[5.7–77.7] and 27.8[19.1–43.1] ng/ml, respectively; median[IQ]; P<0.05). CSF ferritin was increased in TBI patients at t2 and t1 vs. controls (8.3[7.5–19.8] and 8.9[7.5–26.7] vs. [7.5[0.0–0.0] ng/ml, respectively; P<0.05). CSF sIL-2Rα in TBI patients at t2 and t1 were not different vs. controls. Multivariate regression revealed associations between high ferritin and age ≤ 4 y, lower GCS, AHT, and unfavorable GOS.
Conclusions
Children with TBI demonstrate evidence for macrophage activation after TBI, and in terms of CSF ferritin, this appears more prominent with young age, initial injury severity, AHT, and unfavorable outcome. Further study is needed to determine whether biomarkers of macrophage activation may be used to discriminate between aberrant and adaptive immune responses, and whether inflammation represents a therapeutic target after TBI.