We explore whether non-standard dark sector physics might be required to solve the existing cosmological tensions. The properties we consider in combination are: (a) an interaction between the dark matter and dark energy components, and (b) a dark energy equation of state w different from that of the canonical cosmological constant w = −1. In principle, these two parameters are independent. In practice, to avoid early-time, superhorizon instabilities, their allowed parameter spaces are correlated. Moreover, a clear degeneracy exists between these two parameters in the case of Cosmic Microwave Background (CMB) data. We analyze three classes of extended interacting dark energy models in light of the 2019 Planck CMB results and Cepheid-calibrated local distance ladder H0 measurements of Riess et al. (R19), as well as recent Baryon Acoustic Oscillation (BAO) and Type Ia Supernovae (SNeIa) distance data. We find that in quintessence coupled dark energy models, where w > −1, the evidence for a non-zero coupling between the two dark sectors can surpass the 5σ significance. Moreover, for both Planck+BAO or Planck+SNeIa, we found a preference for w > −1 at about three standard deviations. Quintessence models are, therefore, in excellent agreement with current data when an interaction is considered. On the other hand, in phantom coupled dark energy models, there is no such preference for a non-zero dark sector coupling. All the models we consider significantly raise the value of the Hubble constant easing the H0 tension. In the interacting scenario, the disagreement between Planck+BAO and R19 is considerably reduced from 4.3σ in the case of ΛCDM to about 2.5σ. The addition of low-redshift BAO and SNeIa measurements leaves, therefore, some residual tension with R19 but at a level that could be justified by a statistical fluctuation. We conclude that non-minimal dark energy cosmologies, such as coupled quintessence or phantom models, may soften the existing cosmological tensions. * eleonora.divalentino@manchester.ac.uk † alessandro.melchiorri@roma1.infn.it ‡ omena@ific.uv.es § sunny.vagnozzi@ast.cam.ac.uk 1 In Ref. [15,16] the reader can find complete reviews comparing the CMB and local determinations of H 0 .