This study analyzes the role of the measles virus (MV) receptor, i.e. the human CD46 molecule, in the MHC class II-restricted presentation of MV hemagglutinin (H). We generated transgenic mice ubiquitously expressing CD46, with a similar level of transgene expression on the surface of antigen-presenting cells (APC), i.e. B cells, dendritic cells (DC) and macrophages. APC isolated from transgenic mice and nontransgenic controls were tested for their ability to present MV H to H-specific CD4 + I-E d -restricted T cell hybridomas. All three populations of APC were capable of presenting MV to T cell hybridomas, DC being the most efficient. Expression of CD46 on B lymphocytes increased MHC class II-dependent presentation of MV H up to 100-fold, while CD46-transgenic DC stimulated H-specific T cell hybridomas up to 10-fold better than nontransgenic DC. Interestingly, expression of CD46 did not change the presentation efficiency of transgenic macrophages, indicating that CD46-dependent enhancement of antigen presentation depends on the nature of the APC. Furthermore, a single injection of UV-inactivated MV particles into CD46-transgenic mice, but not nontransgenic controls, induced generation of MV-specific T lymphocytes and production of anti-H antibodies, suggesting a role for CD46 in the efficient capture of MV in vivo. These results show for the first time that one ubiquitously expressed cell surface receptor, like CD46, could function in receptor-mediated antigen presentation both in vitro and in vivo and its performance depends on the type of APC which expresses it.