Three kinds of inorganic particles, zinc borate (ZB), organic montmorillonite (OMMT), and expanded graphite (EG) as synergistic flame retardants, are incorporated into ethylene-propylene-diene monomer/polypropylene (EPDM/PP) composites filled with intumescent flame retardants (IFR). The effect of three synergistic flame retardants on the combustion, thermal stability, and mechanical properties of the EPDM/PP/IFR composites are investigated by limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), thermogravimetric analysis (TGA), scanning electron microscopy, mechanical property testing, and dynamic mechanical analysis (DMA). The results from LOI, UL-94, and CCT show that the synergistic effect of IFR with ZB and EG is better than IFR with OMMT in the flame retardant EPDM/PP/IFR composites. The TGA results indicate that the thermal stability and char residues of the composites is improved with the addition of inorganic particles, which is attributed to the formation of dense char layers to isolate heat flow. DMA results including storage modulus (G'), loss modulus (G"), and loss factor (tan δ) suggest that the composites with inorganic particles exhibit more rubber-filler interaction, which limits the movement of the rubber chains. K E Y W O R D S ethylene-propylene-diene monomer, inorganic particles, intumescent flame retardant, polypropylene Ying Zhou co-first author and contributed equally to this study.