In this article, the Hall and ion-slip effects on a mixed convection flow of an electrically conducting nanofluid over a stretching sheet in a permeable medium have been discussed. Using the similarity transformations, the partial differential equations corresponding to the momentum, energy, and concentration equations are transformed to a system of nonlinear ordinary differential equations which are solved numerically using a spectral relaxation method (SRM). The effects of significant parameters on the velocities, temperature, and concentration profiles are analyzed graphically. Moreover, the results of the skin friction coefficients, local Nusselt number, and Sherwood number are determined numerically. The results of the analysis showed that the velocity profile in the flow direction increases with an increase in mixed convection parameter λ, Hall parameter β h , and ion-slip parameter β i , and it decreases with an increase in the magnetic parameter M. Furthermore, temperature and concentration profiles decrease as the mixed convection parameter λ and buoyancy ratio Nr increase. It is also observed that the skin friction coefficients, local Nusselt number, and Sherwood number increase with an increase in the Hall parameter β h , mixed convection parameter λ, and buoyancy ratio Nr.