ance-running specialists [1-3]. However, injury rates ranging from 20-79% [4-6] suggest modern humans are prone to injury in running which the Endurance-Running hypothesis contends is a species-specific movement pattern for which we are well adapted. Explanations and solutions focus largely on shoe design and gait mechanics. Foot structure and function, in contrast, have received little attention in running-related research [7]. Moreover, and despite continued interest in running-shoe design, there has been little attention on how footwear might influence foot structure and function and therefore the rest of the kinetic chain above it. This opinion piece addresses these issues and proposes a novel perspective that could add to factors explaining injury risk in endurance running. Endurance-Running Hypothesis The fossil record of the genus homo shows evidence of musculoskeletal adaptations that reduce the mechanical and energetic demands of bipedal-endurance running. Adaptations differentiating homo sapiens from early homo and from primate ancestors include the nuchal ligament for head stabilisation, a mobile thoracic spine permitting counter rotation of the trunk and legs, long legs that lengthen the stride so reducing energy cost per unit of distance, large proximal hip muscles (gluteals) to control forward pitch of the torso at ground contact, long Achilles tendons and plantar arches to facilitate energy storage and return, and short-straight toes that minimise toe flexion moments and smooth the forward trajectory of body weight over the supporting foot [1-3]. Many of these adaptations benefit running only, suggesting that