Although pacing-related research is widely reported, no studies have described the consistency of pacing strategies or their associated energetic contributions. This study aimed to investigate the consistency of pacing and energetic outlay by establishing the typical within and between trial variations during simulated 4,000 m time trials. Fifteen well-trained male cyclists performed three, 4,000 m time trials with 3-7 days separating each trial. Power output, cadence, heart rate, respiratory exchange and iEMG of the vastus lateralis were recorded continuously throughout each trial. To examine within-trial variability, the data were assigned to 10% bins. Rating of perceived exertion and affective response were recorded every 400 m and a capillary blood sample was collected and assayed for blood lactate concentration every 800 m. Mean typical error across trials 1-3 for all variables was low (range 2.1-6.3%) and lower between trials 2-3 for all variables with the exception of cadence. There were no between-trial differences in pacing strategy; however, typical error for each 10% bin was lower between trials 2-3 than trials 1-2. Anaerobic contribution to power was greatest during the first and last 10% of each trial (p > 0.05). In conclusion, well-trained cyclists demonstrated a high degree of consistency in terms of the pacing strategy they adopted which coincided with similar levels of energy distribution and perceived exertion. A laboratory simulated 4-km cycling trial is a reliable test that may be used to monitor performance and pacing strategy.
The results suggest that pre-operative education is a safe and effective method of reducing length of stay for knee arthroplasty patients.
The maximal oxygen uptake (V-dotO(2max)) is considered an important physiological determinant of middle- and long-distance running performance. Little information exists in the scientific literature relating to the most effective training intensity for the enhancement of V-dotO(2max) in well trained distance runners. Training intensities of 40-50% V-dotO(2max) can increase V-dotO(2max) substantially in untrained individuals. The minimum training intensity that elicits the enhancement of V-dotO(2max) is highly dependent on the initial V-dotO(2max), however, and well trained distance runners probably need to train at relative high percentages of V-dotO(2max) to elicit further increments. Some authors have suggested that training at 70-80% V-dotO(2max) is optimal. Many studies have investigated the maximum amount of time runners can maintain 95-100% V-dotO(2max) with the assertion that this intensity is optimal in enhancing V-dotO(2max). Presently, there have been no well controlled training studies to support this premise. Myocardial morphological changes that increase maximal stroke volume, increased capillarisation of skeletal muscle, increased myoglobin concentration, and increased oxidative capacity of type II skeletal muscle fibres are adaptations associated with the enhancement of V-dotO(2max). The strength of stimuli that elicit adaptation is exercise intensity dependent up to V-dotO(2max), indicating that training at or near V-dotO(2max) may be the most effective intensity to enhance V-dotO(2max) in well trained distance runners. Lower training intensities may induce similar adaptation because the physiological stress can be imposed for longer periods. This is probably only true for moderately trained runners, however, because all cardiorespiratory adaptations elicited by submaximal training have probably already been elicited in distance runners competing at a relatively high level.Well trained distance runners have been reported to reach a plateau in V-dotO(2max) enhancement; however, many studies have demonstrated that the V-dotO(2max) of well trained runners can be enhanced when training protocols known to elicit 95-100% V-dotO(2max) are included in their training programmes. This supports the premise that high-intensity training may be effective or even necessary for well trained distance runners to enhance V-dotO(2max). However, the efficacy of optimised protocols for enhancing V-dotO(2max) needs to be established with well controlled studies in which they are compared with protocols involving other training intensities typically used by distance runners to enhance V-dotO(2max).
The provision of surreptitiously augmented feedback derived from a previous performance reduces time taken for cyclists to accomplish a time trial of known duration. This suggests that cyclists operate with a metabolic reserve even during maximal time trials and that this reserve can be accessed after deception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.