In order to study the proclivity of primary amine groups to act as halogen bond acceptors, three aromatic diamines (p-phenylenediamine (pphda), benzidine (bnzd) and o-tolidine (otol)) were cocrystallised with three perfluorinated iodobenzenes (1,4-tetrafluorodiiodobenzene (14tfib), 1,3-tetrafluorodiiodobenzene (13tfib) and 1,3,5-trifluorotriiodobenzene (135tfib)) as halogen bond donors. Five cocrystals were obtained: (pphda)(14tfib), (bnzd)(13tfib)2, (bnzd)(135tfib)4, (otol)(14tfib) and (otol)(135tfib)2. In spite of the variability of both stoichiometries and structures of the cocrystals, in all the prepared cocrystals the amine groups form exclusively I···N halogen bonds, while the amine hydrogen atoms participate mostly in N–H⋯F contacts. The preference of the amine nitrogen atom toward the halogen bond, as opposed to the hydrogen bond (with amine as a donor), is rationalised by means of computed hydrogen and halogen bond energies, indicating that the halogen bond energy between a simple primary amine (methylamine) and a perfluorinated iodobenzene (pentafluoroiodobenze ne) is ca. 15 kJ mol−1 higher than the energy of the (H)NH∙∙∙NH2 hydrogen bond between two amine molecules.