2016
DOI: 10.1088/0264-9381/33/10/105002
|View full text |Cite
|
Sign up to set email alerts
|

Hamiltonian description of the parametrized scalar field in bounded spatial regions

Abstract: We study the Hamiltonian formulation for a parametrized scalar field in a regular bounded spatial region subject to Dirichlet, Neumann and Robin boundary conditions. We generalize the work carried out by a number of authors on parametrized field systems to the interesting case where spatial boundaries are present. The configuration space of our models contains both smooth scalar fields defined on the spatial manifold and spacelike embeddings from the spatial manifold to a target spacetime endowed with a fixed … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
21
0

Year Published

2016
2016
2021
2021

Publication Types

Select...
6

Relationship

4
2

Authors

Journals

citations
Cited by 11 publications
(21 citation statements)
references
References 25 publications
0
21
0
Order By: Relevance
“…, where b n X is the future directed g-unit normal vector field over the X map (see [15] for details). We denote the Lie derivative along the vector field ( ) a a e V X a…”
Section: Variational Settingmentioning
confidence: 99%
See 2 more Smart Citations
“…, where b n X is the future directed g-unit normal vector field over the X map (see [15] for details). We denote the Lie derivative along the vector field ( ) a a e V X a…”
Section: Variational Settingmentioning
confidence: 99%
“…This, of course, can be explicitly checked by computing the Hamiltonian H according to the standard definition (see, for instance, [15]). In this situation the complete determination of the dynamics of the system just amounts to solving the equation…”
Section: Variational Settingmentioning
confidence: 99%
See 1 more Smart Citation
“…Boundaries lead to the inclusion of surface terms which are essential in the formula-tion of the action in gravity [30][31][32] and other field theories [33][34][35][36][37][38]. The generalization to cases where the boundaries are null [16,39] as well as non-orthogonal [40], have also been considered in the literature.…”
Section: Introductionmentioning
confidence: 99%
“…In fact, some of the difficulties of dealing with the higher dimensional cases are already present in the Robin case (which is quite interesting in its own right [6]), hence, their satisfactory resolution suggests that a complete characterization of the embeddings capable of supporting unitary evolution for n-dimensional tori is possible.…”
Section: Introductionmentioning
confidence: 99%