2015
DOI: 10.1103/physrevd.91.085011
|View full text |Cite
|
Sign up to set email alerts
|

Hamiltonian truncation study of theφ4theory in two dimensions

Abstract: We defend the Fock-space Hamiltonian truncation method, which allows to calculate numerically the spectrum of strongly coupled quantum field theories, by putting them in a finite volume and imposing a UV cutoff. The accuracy of the method is improved via an analytic renormalization procedure inspired by the usual effective field theory. As an application, we study the two-dimensional φ 4 theory for a wide range of couplings. The theory exhibits a quantum phase transition between the symmetry-preserving and sym… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

19
310
0

Year Published

2017
2017
2021
2021

Publication Types

Select...
4
2

Relationship

1
5

Authors

Journals

citations
Cited by 137 publications
(329 citation statements)
references
References 40 publications
19
310
0
Order By: Relevance
“…This is what was done in the previous works [17][18][19], where (11) was truncated to the leading order (LO) n = 2, and ∆H 2 was computed in an analytic local approximation…”
Section: Jhep10(2017)213mentioning
confidence: 99%
See 4 more Smart Citations
“…This is what was done in the previous works [17][18][19], where (11) was truncated to the leading order (LO) n = 2, and ∆H 2 was computed in an analytic local approximation…”
Section: Jhep10(2017)213mentioning
confidence: 99%
“…As a result the convergence is improved. Renormalized HT has been applied in several strongly coupled QFT studies in d = 2 [18][19][20][21]24] and in one study in d = 2.5 [17]. We hope that in the future Hamiltonian Truncation will develop into an accurate numerical method, applicable also in d 3.…”
Section: Jhep10(2017)213mentioning
confidence: 99%
See 3 more Smart Citations